
FEDERAL UNIVERSITY OF RIO DE JANEIRO

MATHEMATICAL INSTITUTE

HUGO SIQUEIRA GOMES

Towards Deep Q-Caching

Prof. Daniel Sadoc Menasche, Ph.D.

Advisor

Prof. Wouter Caarls, Ph.D.

Coadvisor

Rio de Janeiro, Dezembro 2017

Towards Deep Q-Caching

Hugo Siqueira Gomes

Projeto Final de Curso submetido ao Departamento de Ciência da Computação do

Instituto de Matemática da Universidade Federal do Rio de Janeiro como parte dos

requisitos necessários para obtenção do grau de Bacharel em Informática.

Apresentado por:

Hugo Siqueira Gomes

Aprovado por:

Prof. Daniel Sadoc Menasche, Ph.D.

Prof. Wouter Caarls, Ph.D.

Prof. João Carlos Pereira da Silva, Ph.D.

Prof. Fabrício Firmino de Faria, M. Sc.

RIO DE JANEIRO, RJ - BRASIL

Dezembro 2017

Agradecimentos

Nesta importante etapa da minha vida, gostaria de fazer alguns agradecimentos

à pessoas que me ajudaram a chegar até aqui.

À minha mãe Tríccia e ao meu pai José Antonio, pelo carinho e dedicação que

sempre me deram e completo apoio nas principais decisões da minha vida.

À minha irmã Maitê, minha eterna dupla e parceira para o que der e vier, pela

paciência e motivação durante a vida acadêmica, .

À Mariana, minha companheira e melhor amiga que me deu força e ânimo me

acompanhando por toda essa jornada.

Aos meus amigos do curso de Ciência da Computação, em especial aos da turma

2013.2, com quem convivi e aprendi ao longo da graduação e que me proporcionaram

a melhor experiência possível em minha formação acadêmica.

Aos professores do Curso de Ciência da Computação que fizeram parte da minha

formação acadêmica. Em especial, os Prof. João Carlos e Collier que sempre

se mostraram mais do que disponíveis nas principais horas de questionamentos.

Gostaria de destacar o Prof. João Carlos que me introduziu em IA.

Agradeço aos Prof. Wouter Caarls e Daniel Sadoc por todo o apoio durante

a elaboração deste trabalho. Em particular, o Daniel por ter iniciado a ideia do

presente trabalho comigo e de me introduzir na área de estudos de Redes. E, o Prof.

Wouter por sua paciência nas suas explicações, por ter me dado a abertura para

assistir as aulas na PUC Rio e, por ter me guiado no entendimento do GRL para o

desenvolvimento desse trabalho.

i

RESUMO

Towards Deep Q-Caching

Hugo Siqueira Gomes

Dezembro/2017

Advisor: Daniel Sadoc Menasche, Ph.D.

O aprendizado de reforço profundo atraiu atenção significativa de pesquisadores

e profissionais devido à sua eficiência e robustez na busca de boas políticas para

agentes de inteligência artificial. No entanto, ainda falta um bom entendimento

de como diferentes parâmetros interagem para obter boas soluções. Em particular,

pouco se sabe sobre a causa dos algoritmos não funcionarem ou não convergirem

para certos problemas. Depurar soluções de aprendizado por reforço profundo é um

desafio significativo.

Neste trabalho, o objetivo é estudar o impacto de diferentes parâmetros na qual-

idade das soluções obtidas através da aprendizagem de reforço profundo. Para isso,

foram integradas soluções de aprendizado de reforço profundo em uma biblioteca de

aprendizado de reforço geral (GRL). Então, foi investigado como a topologia da rede,

a taxa de exploração e os tamanhos do lote influenciam no tempo de convergência.

Finalmente, foi modelado o problema de roteamento em cache comum como um

problema de aprendizado de reforço profundo e iniciou-se o processo para descobrir

como o GRL pode ajudar na obtenção de boas políticas para a futura Internet, sob

o paradigma de Redes Orientadas a Conteúdo.

ii

ABSTRACT

Towards Deep Q-Caching

Hugo Siqueira Gomes

Dezembro/2017

Advisor: Daniel Sadoc Menasche, Ph.D.

Deep reinforcement learning has attracted significant attention from researchers

and practitioners due to its efficiency and robustness in finding good policies for

artificial intelligence agents. Nonetheless, there still lacks a good understanding

of how different parameters interact to obtain good solutions. In particular, little is

known about why the algorithms do not work or do not converge for certain problems.

Debugging deep reinforcement solutions is poses significant challenges.

In this work, our goal is to study the impact of different parameters on the qual-

ity of the solutions obtained through deep reinforcement learning. To this aim, we

integrate deep reinforcement learning solutions into a general reinforcement learn-

ing (GRL) framework. Then, we investigate how network topology, exploration rate

and batch sizes impact convergence time. Finally, it was modeled the joint caching-

routing problem as a deep reinforcement learning problem, and point towards how

GRL can help in obtaining good policies for the future Internet, under the Informa-

tion Centric Networks (ICN) paradigm.

iii

List of Figures

Figure 2.1: A Neuron Structure . 8

Figure 2.2: Examples of Activation Functions 9

Figure 2.3: Deep Feedforward Network Topology 10

Figure 2.4: Simplified scheme of reinforcement learning 14

Figure 2.5: Naive formulation of Deep Q-Network 18

Figure 2.6: Optimized architecture of Deep Q-Network 18

Figure 3.1: GRL configurator . 21

Figure 3.2: Control of a pendulum with limited torque 24

Figure 3.3: Control of a pendulum with limited torque 25

Figure 3.4: DNNs models for Pendulum and Cart-Pole tasks: models are or-

dered from left to right, from (A) to (F). (F) and (E) [rightmost

models] are the less complex DNN models. (A) [leftmost model]

is the most deeper DNN model. (A) is used as reference model. 28

Figure 3.5: Inverted Pendulum tested with 6 DDNs architectures 29

Figure 3.6: Cart-Pole tested with 6 DDNs architectures 29

Figure 3.7: Cart-Pole tested with 3 DNNs architectures 30

Figure 3.8: Inverted Pendulum tested with 4 different ε-policy 30

iv

Figure 3.9: Cart-Pole tested with 4 different ε-policy 30

Figure 3.10: Inverted Pendulum tested with 6 different Minibatch Size 31

Figure 3.11: Cart-Pole tested with 5 different Minibatch Size 31

Figure 3.12: Inverted Pendulum tested with 4 different Update Intervals 32

Figure 3.13: Cart-Pole tested with 3 different Update Intervals 32

Figure 4.1: Current Internet Architecture: ISPs are interconnected with each

other, and there are big service providers connected to them. End-

users are attached to various ISP networks. 34

Figure 4.2: Example of LRU strategy: The access sequence is ABCDEDF, so

when E is accessed, it is a miss. Then, it replaces A because A

has the lowest time. 40

Figure 4.3: Network topology. 43

v

List of Tables

Table 3.1: Basic Parameters . 27

Table 3.2: Testing Parameters . 28

vi

List of Listings

3.1 Example of Keras code to generate DNNs for GRL 22

vii

List of Abbreviations and Acronyms

AI Artificial Intelligence

API Application Programming Interface

ANN Artificial Neural Network

BP Backpropagation

CCN Content-Centric Network

CNN Convolutional Neural Network

DNNs Deep Neural Networks

GRL Generic Reinforcement Learning Library

ICN Information-Centric Network

INFORM Interest Forwarding Mechanism

IoT Internet of Things

ISP Internet Service Provider.

LRU Least Recently Used

MEC Minimum Expected Cost

MDP Markov Decision Process

ML Machine Learning

PARC Palo Alto Research Center

RL Reinforcement Learning

viii

RNN Recurrent Neural Network

TCP Transmission Control Protocol

IP Internet Protocol

WSN Wireless Sensor Networks

ix

Contents

Agradecimentos i

Abstract ii

Abstract iii

List of Figures iv

List of Tables vi

List of Listings vii

List of Abbreviations and Acronyms viii

1 Introduction 1

1.1 Contributions . 2

1.2 Roadmap . 3

2 Background on Machine Learning and Deep Reinforcement Learn-

ing 4

2.1 Machine Learning . 4

2.2 Artificial Neural Networks . 7

x

2.2.1 The Single Neuron Model . 8

2.2.2 The Multilayer Model . 9

2.2.3 The Learning Problem . 10

2.2.4 Deep Learning . 12

2.3 Reinforcement Learning . 13

2.3.1 Q-Learning . 15

2.3.2 Deep Q-Network . 18

3 Generic Reinforcement Learning Library 20

3.1 GRL . 20

3.2 Deep Q-Learning in GRL . 22

3.3 Evaluating Deep Q-Learning . 23

3.3.1 The Inverted Pendulum . 23

3.3.2 The Cart-Pole Swing-Up . 25

3.4 Learning Performance . 26

3.4.1 Standard Strategy . 27

3.4.2 DNNs models . 28

3.4.3 Epsilon . 30

3.4.4 Minibatch Size . 31

3.4.5 Update Interval . 31

4 Routing-Caching Problem 33

4.1 Internet Overview . 33

4.2 Information Centric Networking . 34

xi

4.3 Q-Routing . 36

4.4 Q-Caching . 37

4.5 Deep Q-Caching . 38

4.5.1 Motivation and Goals . 38

4.5.2 Simulator Overview . 40

4.6 Preliminary Results . 43

5 Conclusion 44

References 46

xii

Chapter 1

Introduction

One of the first developments of Artificial Intelligence was achieved by Alan

Turing on his paper “Computing machinery and intelligence” [30] when he started

to define what is the meaning of “machine” and “think”. For decades, groups of

different people – computer scientists, engineers, psychologists, biologists, linguists,

philosophers - have been trying to establish the principles and concepts that make

intelligence possible to a computer. Given the great development of computational

and mathematical areas such as Statistics, Computer Science and Optimization, a

subfield of Artificial Intelligence, known as Machine Learning, takes a step toward

the idea of solving intelligence and has successfully improved performance in several

types of tasks (e.g. computer vision and natural language processing).

In the course of further research in Machine Learning, scientists have combined

Deep Learning - a broad set of machine learning methods, and Q-Learning - a

reinforcement learning algorithm. Deep Q-Learning - as it was named by its creators

- was used in different tasks and demonstrated a very optimistic result, especially

when applied in digital games [23].

There are two fronts in the present work. In the first one, the Deep Q-Learning

algorithm was implemented and integrated into the Generic Reinforcement Learning

Library (GRL – Wouter Caarls, Ph.D.) so that its performance could be studied and

analyzed in different environments using different parameters, since it’s relatively

1.1. CONTRIBUTIONS 2

new and its implementation is not yet consolidated in the literature. This integration

was indispensable for it to be tested in a huge range of different conditions instead

of being limited to case-by-case implementation. There are many new environments

and tasks that Deep Q-Learning can still contribute.

A new paradigm which could be optimized by Deep Q-Learning arose as the

second part of this work: Information-Centric Networks (ICN). ICN is an approach

to enhance the Internet’s infrastructure, which has been focused on the end-to-end

principle. It consists of requisition of contents by unique names, without the use of

original server location (i.e., IP address), hence allowing caching and replication of

the content in the network. With that in mind, it was thought to implement the

environment and adapt a new version of Q-Caching [9] using Deep Q-Learning in

GRL. Further details will be provided in Chapter Chapter 4.

1.1 Contributions

In summary, the key contributions of this work are the following:

1. Development and testing of a generic reinforcement learning library

(GRL): we tested and participated in the development of a generic rein-

forcement learning library which allows easy tuning of parameters to perform

experiments using Deep Q-Learning. The library allows to perform sensitivity

analysis and to understand the impact of multiple parameters on convergence

time and accuracy of reinforcement learning results. In particular, two re-

inforcement learning problems was evaluated in details using GRL: Inverted

Pendulum and Cart-Pole Swing-Up;

2. Mapping of the joint caching-routing problem into the Deep Q-

Learning framework: it is show how to map the problem of jointly de-

termining caching and routing decisions in an information centric network

into a problem in the framework of Deep Q-Learning. In particular, it is indi-

cated that Q values (i.e., the value function) can be used both for routing and

caching decisions. It is also indicated that deep neural networks can be used

1.2. ROADMAP 3

to relate decisions on similar contents, avoiding the curse of dimensionality in

determining an individual decision per content in the catalog. The proposed

solution is referred to as Deep-Q-Caching ;

3. Use of GRL to solve instances of the caching-routing problem: we

use GRL to experiment with the joint cache-routing problem. To this aim,

we implemented a network simulator under the GRL framework, and exe-

cuted preliminary experiments with the goal of understanding different net-

work topologies, content request distributions (workloads) and reinforcement

learning parameters. Our preliminary results indicate that Deep Q-Caching

is a promising solution to cope with the caching and routing of contents in

networks oriented by contents.

1.2 Roadmap

The remainder of this work is organized as follows. In Chapter 2, it is described

fundamental concepts of machine learning, deep and shallow neural networks as well

as how to train them with backpropagation and concepts of reinforcement learn-

ing. Then, in Chapter 3 it is evaluate two reinforcement learning tasks. After, in

Chapter 4, it is introduced Deep Q-Caching as well as related algorithms. Finally,

Chapter 5 concludes.

Chapter 2

Background on Machine Learning

and Deep Reinforcement Learning

This Chapter provides a brief description of core elements and terminologies in

the current Artificial Intelligence field. It aims to define the purpose of Machine

Learning, to show what kind of tasks Reinforcement Learning proposes to solve

and understand why Neural Networks became so popular in the last few years.

In addition, Backpropagation, Q-learning and Deep Q-learning algorithms will be

introduced and explained in details. Some of recent papers about Machine Learning

[13], Neural Networks and Deep Learning [25], and Reinforcement Learning [20] are

good references to this chapter.

2.1 Machine Learning

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) and is growing

to become critical for all fields of AI. The interest in ML has recently surged due

to increased computational processing power and the current available data. In the

literature, ML usually refers to algorithms which goal is to generalize their current

data in order to predict another that it has not seen yet. The idea behind it comes

from algorithms that learn from experiences/examples rather than fixed programs

that have hard-coded rules. The ultimate goal of all kind of ML algorithms is to

2.1. MACHINE LEARNING 5

find optimal parameters, i.e, parameters that minimize an evaluation function (also

called objective function). For this purpose, there are three steps usually used to

perform a ML task: data exploration, setting up a model and model evaluation a

model.

Data exploration consists of acquiring and treating the data to be used in a

specific task. There can be two types of data: Structured Data – generally consists of

numerical information, usually text files, which can be easily organized, processed in

titled columns and rows, and Unstructured Data – usually binary data which has no

easily identifiable internal structure (e.g. audios, images, videos and text messages).

The data is usually represented as a vector X ∈ Rn where each dimension of this

vector is considered a feature for the ML method and each of them should be relevant

information depending on the task. In this step, it is necessary to set the kind of

data that will be represented or predicted and define the type of the task. This task

can be, for example, a Classification Problem – prediction of discrete/categorical

variable, or a Regression Problem – prediction of real number/continuous variable.

After this, the data is analysed, treated and organized in a dataset with many

optional approaches, for example: Missing Values Treatment – complete missing

values or balance classes of the dataset, and Outlier Detection – remove observations

that appears far away and diverges from an overall pattern in the data. In conclusion,

Feature Engineering – algorithms to extract more useful information about your

data, is applied.

Setting up a model consists of choosing a learning algorithm and define a

structure to embody the data representation. This structure - known as model, is

dependent on the data type and the given task. There are a lot of models to different

tasks in the literature such as: Support Vector Machines [15], Random Forests [7]

and Neural Networks [25]. When the model is chosen, it processes the training data

- a subset of the dataset. This procedure is called Training Phase where the model

is optimized to be used for future predictions. In this phase, a loss function is

defined to measure the model performance according to its accuracy, for example:

a classification error rate. During the training phase, parameters of the model are

improved via minimization of the training measured error, just as an optimization

2.1. MACHINE LEARNING 6

problem.

Model evaluation consists of checking and maybe improve the model based on

a measurement. There are another two subsets of the dataset: validation and testing.

The former is used to provide an unbiased evaluation of the model training while

tuning model hyperparameters - parameters of the model that can not be changed

during the training phase. The latter is used to provide an unbiased evaluation of

a final trained model. Using the generalization error - accuracy from the testing

dataset, it is possible to measure the error on a new input data. The goal of the

machine algorithm is to minimize the error of the training data and the gap between

the training error and generalization error. In conclusion, this last step checks the

reasons why the algorithm cannot converge to an optimal result and makes changes

in the model hyperparameters or even change the model in order to maximize the

accuracy if it is necessary.

In addition to these general steps, algorithms or methods of ML can be classified

into four different groups that share the same principles: supervised, unsupervised,

semi-supervised learning and reinforcement learning. This classification is based on

how the training data is provided to the model. In supervised learning, there is

a pre-defined group of pairs 〈xi, yi〉. Each x represents a feature and each y is called

label - a value that indicates the output of this configuration of features. Using these

pairs, the goal is to learn a mapping from x to y. In mathematical terms, a function

h needs to be optimized so that h(xi) ≈ yi. This optimization is related to an error

function (e.g mean-squared error):

c(θ) =
∑
i

(yi − f(xi; θ))
2 (2.1)

Linear Regression, Support Vector Machine, Naive Bayes are example of Super-

vised Algorithms. They can be used for Image or Speech Recognition and Forecast-

ing, for example.

In unsupervised learning, there are no pre-defined labels. We have ~x =

(x1, . . . , xn) being a set of i examples (or points) that will be used to achieve the

goal of finding interesting structure or representations in the data. The error to be

2.2. ARTIFICIAL NEURAL NETWORKS 7

minimized is the error of reconstruction:

c(θ) =
∑
i

(xi − f−1(f(xi; θ); θ))
2 (2.2)

Those algorithms are classified in different groups, such as Clustering Algorithm

(e.g. K-means) and Dimensionality Reduction (e.g. PCA, SVD and Autoenconders).

In semi-supervised learning, there are labeled and unlabeled data for train-

ing. It is halfway between supervised and unsupervised learning methods since the

algorithm, besides unlabeled data, is provided with some supervision information

for only a (small) subset of your data. Those algorithms are classified in differ-

ent groups, such as Generative Models, Low-density separation and Graph-based

methods.

In reinforcement learning, the task is to optimize the agent’s behavior in

a environment. There are no labels in the data, but the agent is provided with

a numerical value feedback known as reward signal. The environment is typically

formulated as a Markov decision process (MDP). Those algorithms are classified

in different groups, such as Value-based, Monte Carlos and Temporal Difference

methods

2.2 Artificial Neural Networks

Automatically learning from data seems promising. In opposition to conventional

approach in programming, in Machine Learning there is no need to precisely define

rules that the computer can easily accomplish. Rather, the algorithms learn from

observational data, optimize its parameters and try to figure out the target numbers.

With all that, there is a model called Artificial Neural Networks that tries to take a

step forward as we will see in this discussion.

Artificial Neural Networks (ANNs) have been around since the ‘50s, but until

2006, with the discovery of techniques for learning in Deep Neural Networks (DNNs),

it was not known how to train this model to surpass most traditional approaches,

just for a few specialized problems that did not require as much data and computing

2.2. ARTIFICIAL NEURAL NETWORKS 8

Figure 2.1: A Neuron Structure

power as other problems do now. In consequence of the discovery of many techniques

to train them and an increased processing power, it was achieved best solutions

to many problems in image, speech recognition and natural language processing -

important fields of AI.

2.2.1 The Single Neuron Model

ANNs try to mimic the human brain process. It defines a neuron - processing

unit consisting of numerical inputs, a body where the inputs are processed and an

output, and their connections - analogy for biological synapses that has no power

of processing, they are only responsible for connecting an output of a neuron with

an input of another. A neuron represents a function that maps an input vector

x = (x1, x2, . . . , xn) to a scalar output y via a weight vector (w = w1, w2, . . . , wn), a

bias b and a nonlinear function f (Figure 2.1). The function f takes the weighted

sum of the inputs plus the w0, usually called bias b and returns y:

z = b+
N∑
i=1

wixi (2.3)

y = f(z) (2.4)

where N is the total numbers of inputs and f is a function to provide non-

linearity between the input and output known as activation function. There are

many of them that could be used, but some are represented in Figure 2.2.

2.2. ARTIFICIAL NEURAL NETWORKS 9

Figure 2.2: Examples of Activation Functions

2.2.2 The Multilayer Model

The way that neurons are configured in a Neural Network is known as network

topology. In this work, it is used a topology that is called feedforward neural

networks where the network is divided in layers where each neuron of each layer is

connected with all the neurons in the next layer. Figure 2.3 represents this kind of

neural network.

For the purpose of clarity, it is used matrix notation: aki is the output of the

neuron i in layer k, wkij is the weight j (up-down) of the neuron i associated with

the corresponded neuron at layer k− 1, bki is the bias of the neuron i in layer k and

zki is the output of a neuron i in layer k without applying the activation function.

Therefore, ak is a column vector of elements aki . wk is a matrix of elements wkij. bk

is a column vector of elements bki . zk is a column vector of elements zki .

Using this type of neural network, it is possible to process the input vector

throughout all layers, i.e., calculate the final output of it. This process is known as

forward pass and can be generalized as:

zk = wka(k−1) + bk (2.5)

ak = f(zk) (2.6)

2.2. ARTIFICIAL NEURAL NETWORKS 10

Figure 2.3: Deep Feedforward Network Topology

2.2.3 The Learning Problem

In the feedforward model, each neuron of a ANNs produces an output, using

the activation function, based on a set of weights and the outputs of the previous

layer. This information flows from left to right, so when a network is feeded with an

input vector it processes it and generates an output vector. The learning problem of

ANNs consists of finding the optimal combination of weights so that the processing

function represents a good approximation of the dataset. For this, it is needed to

find a way to measure how good or bad is a set of weights. Thus, it is defined a

cost function, for example:

C(w) =
1

N

N∑
i=1

E(yi, hw(xi)) (2.7)

where an(xi) is the output of the last layer of the network with weights w an input

xi, N is the total number of training examples (xi, yi) and E(yi, hw(xi)) is the error

function between yi and hw(xi). Like any optimization problem, the goal is to

minimize an objective function:

w∗ = argmin
w
C(w) (2.8)

The first approach could be to find every minimum points in the objective func-

tion by solving the derivative of it equals to zero. However, compute the whole

2.2. ARTIFICIAL NEURAL NETWORKS 11

expression for this derivative and solving it is not trivial. The multidimensional

parameters makes the process harder since it is needed to find the points where all

of those derivatives are zero and there are a lot of minimums points throughout the

function. This makes this approach computationally expensive, specially when the

size of ANN scales up.

Another approach is iterative optimization methods. This class of algorithms do

not solve it analytically, they try to follow the derivative of the function in order to

find the optimal weight configuration for the network. A basic algorithm for this

is gradient descent. Each iteration updates the weights w on the basis of the

gradient as the follows equations:

wk
′

ij = wkij − η
∂C(w)

∂wkij
(2.9)

bk
′

ij = bkij − η
∂C(w)

∂bkij
(2.10)

where η > 0 is the learning rate of the algorithm and wk’ij and bk’ij are the new

values of the weights and bias. There is a variation of this method - known as

stochastic gradient descent, that is more common to use. It uses mini-batches of

the dataset to update the weights rather than calculating the error of all examples

as states in Equation 2.7 [5].

The partial derivatives of C(w) is calculated via Backpropagation (BP) [16].

The goal with BP is to update the weights of each layer step by step from right to

left using partial derivatives, thereby minimizing the error for each output neuron

and the network as a whole. From the chain rule, it can be obtained the partial

derivative of E - total error of the network, with respect to the last layer L of the

network:
∂E

∂wLij
=
∂E

∂aLi

∂aLi
∂zLi

∂zLi
∂wLij

(2.11)

The second term, equal to ∂E
∂aLi

of Equation 2.11 is straightforward to evaluate

if the neuron is in the output layer, because aLi = hw(x). However, finding the

derivative E with respect to aki of a arbitrary layer k is not so trivial. Then, using

2.2. ARTIFICIAL NEURAL NETWORKS 12

chain rule one more time, it can be defined a relation with the layer L− 1:

∂E

∂aL−1i

=
∑
l∈L

∂E

∂aLl

∂aLl
∂zLl

∂zLl
∂wL−1i

(2.12)

Therefore, the derivative can be calculated if all the derivatives with respect to

the outputs aL (next layer) are known. Then, to update the weight wij or bias bij,

using gradient descent, is just add the product of the learning rate and the gradient,

multiplied by -1 (required in order to update in the direction of a minimum of the

error function) as mentioned in Equation 2.9 and Equation 2.10:

∆wij = η
∂E

∂wij
(2.13)

∆bij = η
∂E

∂bij
(2.14)

To sum up, the final algorithm of BP is:

• Use the feedforward pass with the data to get the network output (Equa-

tion 2.5).

• for each output node, compute Equation 2.11.

• for each hidden node, compute Equation 2.12.

• update the weights and biases as Equation 2.13 and Equation 2.14.

2.2.4 Deep Learning

The reason why Deep Learning differs from shallow learning is about how the

model processes the data. Many of machine learning algorithms have an input and

an output layer, and the inputs may be transformed with manual feature engineering

before training. Deep Learning adds one or more hidden layers - layers between the

input and output layer to allow the model to learn hierarchies of concepts and

building up abstraction on those layers.

Many applications of deep learning use feedforward neural network architecture

as represented in Figure 2.3, which learns a function f to map input X to output Y

2.3. REINFORCEMENT LEARNING 13

with minimal error on the data. The BP algorithm explained before is used to find

the weights and bias the same way. These methods have improved the state-of-art

in speech recognition, visual object recognition, object detection and many other

application such as automatic machine translation and image caption generation.

There are many variations of these typologies such as Convolutional Neural Net-

work (CNN) - usually used in multiple array data (e.g. images), and Recurrent

Neural Network (RNN) - usually used in sequential inputs (e.g. texts). Also, there

exists a huge number of concepts and techniques to train these deep models. Dropout

[26] and Batch Normalization [17] are examples of them.

2.3 Reinforcement Learning

Reinforcement Learning (RL) is a learning problem that refers to optimize a

controller of a system, i.e., optimize its behavior in some environment, to achieve a

maximum numerical value which represents a long-term objective. RL differs from

from supervised learning which there is a target label for each training example, and

unsupervised learning which has no labels in the training data. It uses sparse and

time-delayed signals - the rewards, for learning and the online performance is also

important, i.e., the evaluation of the system is often concurrent with learning. A

standard RL model example is shown in Figure 2.4: On each time step, the agent

receives an observation as input, o(s); the agent then chooses an action, a(t), to

interact with the environment and receives a numerical value, reward r(t).

The challenge of RL is to propose algorithms for learning to behave optimally.

The agent should optimize a policy π(s) that maps the state s to action a. In

particular, approximate π(s) to π∗(s) which is defined as the optimal policy. The

environment is considered non-deterministic, that is, when the agent takes the same

action at the same state on different occasions, it may result in different next states

and/or different rewards.

In order to achieve an optimal behavior, it should be defined how the agent

should take the future into account to decide for its action. Because of environment

2.3. REINFORCEMENT LEARNING 14

Figure 2.4: Simplified scheme of reinforcement learning

is stochastic, the agent can never be sure that it will get the same rewards the

next time it takes this action. Therefore, the more into the future the prediction

is, the more it may diverge. Hence, in the present work, it will be consider the

infinite-horizon discounted model. It takes the sum of the rewards of the agent with

a geometrically discounted rate according to discount factor 0 ≤ γ < 1:

Rt =
n∑
t=0

γtrt

= rt + γ(rt+1 + γ(rt+2 + ...))

= rt + γRt+1

(2.15)

The Equation 2.15 is used to define the value function V (s). It returns a nu-

merical value for a specific state and it is defined as the expected total reward that

the agent will receive starting from the particular state s. It depends on the policy

π that the agent follows. Therefore, the formula of value function is given by:

V π(s) = Eπ

(
∞∑
t=0

γi−1ri

)
,∀s ∈ S (2.16)

Using the Equation 2.15, it can be used to establish a relation with the optimal

policy π∗(s). Since the agent needs to achieve the greatest values of accumula-

tive rewards, it corresponds to the value function that has higher value than other

2.3. REINFORCEMENT LEARNING 15

functions for all states:

∀s ∈ S : π∗(s) = arg max
π

V π(s) (2.17)

There are different groups of algorithms to deal with RL. This present work

considers the Deep Q-Learning algorithm [23] because of its optimistic results in

learning a control policies in high-dimensional environments. It will be explained

in further details in the following sections. However, there are many approaches to

solve reinforcement learning problems that are not considered in this work because

they fall out of the scope of the work. There are many optimization methods such

as genetic algorithms and simulated annealing that have been used to approach re-

inforcement learning tasks without using the concept of value function. Value-based

algorithms (e.g. Deep Q-learning) requires a Markov Decision Problem (MDP) to

model the problem and there are important classes of methods to solve it: Dynamic

Programming, Monte Carlo methods and Temporal-Difference learning. For further

details, the book [27] is recommended.

2.3.1 Q-Learning

In Watkins’ work [31], he proposed a general computational approach based in

rewards and punishments for the agent. Q-Learning was conducted considering two

main ideas: to minimize the cost of behavior and trial-and-error learning.

The former is related toOptimal Control Theory - a field of study which deals

with methods to find a control law for a system with a specific optimal rule. One

approach to solve this kind of problems was developed in the mid-1950s by Richard

Bellman and others [21]. The group of algorithms for solving optimal control prob-

lems by Bellman equations (Equation 2.19) is also known as dynamic programming

It is commonly the only adopted way of solving general stochastic optimal control

problems even if it suffers from the curse of dimensionality as explained in Bellman’s

work [4].

The approach of trial-and-error learning is related to psychology of animal

learning. In Edward Thorndike’s work [29], he introduces the idea of Law of Effect.

2.3. REINFORCEMENT LEARNING 16

It investigates animals behaviors and concludes that moves who were followed by

gratifying consequences tend to happen more often and those that produce undesir-

able consequences are less likely to occur.

Q-learning is a solution method for an MDP using statistical techniques and

dynamic programming methods. Since it directly estimates the utility of taking

actions without modeling the environment, it is classified as model-free algorithm.

An MDP consists of:

• S = a set of states, with start state sstart ∈ S

• A(s) = a set of actions from state s

• T (s, a, s’) = transition function which is the probability of s’ if take action a

in state s

• R(s, a, s’) = reward of the transition (s, a, s’)

It is considered that MDP has memoryless property known as Markov Prop-

erty: the probability distribution of next state st+1 of the process depends only

upon the current state st and action at, not on the sequence of events that precede

it. One episode of the process is defined as a finite sequences of states, actions and

rewards:

s0, a0, r1, s1, a1, r2, s2, a2, r3, ..., sn−1, an−1, rn, sn

As a solution in MDP, the agent needs to optimize a policy π(s) which maps each

s ∈ S to an action a ∈ A. Intuitively, to find a good aproximation of the optimal

policy π∗(s), Q-learning is a technique that tries to measure the quality Q of a

certain action a in a given state s. It is needed to define a function Q(s, a) that will

return the estimate of the maximum discounted future reward (Equation 2.15) that

the agent can receive after performing the action a in the state s. It is defined as:

Q(st, at) = maxR(t+ 1) (2.18)

2.3. REINFORCEMENT LEARNING 17

This function may be counter-intuitive since it returns the final accumulated

reward of the episode just knowing the current state and action. But it is possible

to define a recursive function:

Q(s, a) = r + γmax
a′

Q(s′, a′) (2.19)

which states that the value Q of the pair 〈s, a〉 is the immediate reward r - reward

that the agent will receive in state s if it performs the action a, plus the maximum

future discounted reward that the agent can receive if it chooses the action a′ which

has the best estimate of future rewards. The γ factor is the discount factor as

mentioned before. Using this formula, it is possible to iteratively approximate the

Q-function to the real value using an update rule [22].

A simple algorithm for Q-Learning in one episode following the policy π(s) that

selects the action with maximum Q-value is:

Algorithm 1 Q-Learning
1: initialize Q-table with random values
2: initialize s
3: while s 6= sn do . sn is a terminal state
4: action a← arg maxa∈A(s)Q(s, a)
5: reward r, state s′ ← environment.next(a) . act in the environment
6: Q[s, a]← Q[s, a] + α(r + γmaxa′ Q[s′, a′]−Q[s, a])
7: s← s′

In this algorithm, the Q-function is a table, with states as rows and actions

as columns; α represents the learning rate of the algorithm and γ represents the

discounted factor. Note that the the values of each cell in the Q table may be

random or without a reasonable meaning leading to wrong values. However, with

more episodes and iterations, the estimates of Q-values get more accurate as a

consequence of the update rule [22].

The behavior of the policy is very important since it is directly related to the

problem in RL: exploration vs. exploitation. When the policy always chooses

the best estimated action, it may not be covering all possible states. It is said the

the agent is exploiting the environment. To discover new states, the agent should

2.3. REINFORCEMENT LEARNING 18

use random actions. It is said that the agent is exploring the environment. This

is a trade-off relation: if the actions are too random, the agent may not get great

rewards very often and if the actions are very greedy, the agent may not find better

actions. A simple solution for this is using ε-greedy policy:

πε−greedy(s) =

arg maxa∈A(s)Q(s, a) with probability (1− ε)

random action from A(s) with probability ε
(2.20)

2.3.2 Deep Q-Network

Deep Reinforcement Learning is obtained when Deep Neural Networks is used to

approximate the value function, the policy or the model of a reinforcement learning

task. In the present work, Neural Networks will be used to approximate the Q-value

function of the Q-learning algorithm. It exploits the fact that NNs are very good at

coming up with relevant features for highly structured data and it will be essential

for Deep Q-Caching. There are two main organization for the DNNs. The first

one takes the state and action as input and the corresponding Q-value as output

(Figure 2.5). The second one uses only the state as input and outputs the Q-value

for each possible action (Figure 2.6).

Figure 2.5: Naive formulation of

Deep Q-Network

Figure 2.6: Optimized architec-

ture of Deep Q-Network

2.3. REINFORCEMENT LEARNING 19

Algorithm 2 Deep Q-Network
1: initialize Q-network with random weights
2: while s 6= sn do . sn is a terminal state
3: select a ∈ A(s) :
4: with probability ε random action
5: otherwise a← arg maxa∈A(s)Q(s, a)
6: reward r, state s′ ← environment.next(a) . act in the environment
7: Qtarget = r + γmaxa′Q(s′, a′)
8: train the DNN using Qtarget as output
9: s← s′

In Algorithm 2, it is shown a simplified Deep Q-Network algorithm under a ε-

greedy policy during one episode. Given a state s, it is needed to apply a feedforward

pass for every combination (s, a), where a ∈ A(s) (line 5). Then, it is chosen the

action with greatest value when not acting greedily. With the chosen action and

moving to next state s′, it is possible to get the best estimate Q-value applying

feedforward pass for all a′ ∈ A(s′) (line 7). Then, using Q-learning update rule and

backpropagation, update a new estimate for the pair (s, a).

Deep Q-Networks are very powerful however Q-learning does not converge with

such representation. Therefore, Deep Q-learning introduces some differences to

maintain convergence in practice: experience replay and separate target net-

work. The former is a strategy to prevent the network from learning about what

it is immediately doing in the environment and allow it to learn a more varied past

experience. It stores a fixed size buffer of recent memories while acting in the envi-

ronment. During the training it draws a uniform batch of random memories from

the buffer and train the network with them. The second strategy uses a second

network during the training procedure. It is used to generate the target Q-values

that will be used to compute the loss for every action during training. The target

network’s weights are fixed, and only periodically or slowly updated to the primary

Q-networks values. Using both strategy, the training can proceed in a more stable

manner [24].

Chapter 3

Generic Reinforcement Learning

Library

This Chapter provides a brief high-level overview of organization, purpose and

structure of the Generic Reinforcement Learning Library (GRL) as well as some

implementation details of Deep Neural Networks in GRL. Furthermore, it will get

in details of two benchmark problems in the field of reinforcement learning that

were used to check the power of Deep Q-Learning in different situations and the

correctness of its implementation.

3.1 GRL

Generic Reinforcement Learning Library is a free software developed by Prof.

Wouter Caarls during his postdoc at Federal University of Rio de Janeiro in 2015.

It is written in C++ programming language and the main purpose of this library is

to easily allow different parameters, algorithms and environments to be connected

and tested using Reinforcement Learning. It provides a declarative configuration

interface (Figure 3.1), letting the user set up a specific experiment.

3.1. GRL 21

Figure 3.1: GRL configurator

Most classes and interfaces in GRL are organized using the agent-environment

interface specified by RLGlue [28] that allows main entities of reinforcement learning

or even experiment programs written in different languages to be connected. The

implementation and more information about GRL can be accessed in github 1. More

relevant details will be provided in the next sessions.
1https://github.com/wcaarls/grl

https://github.com/wcaarls/grl

3.2. DEEP Q-LEARNING IN GRL 22

Listing 3.1: Example of Keras code to generate DNNs for GRL

import numpy as np

import tensorflow as tf

from keras.models import Sequential

from keras.layers.core import Dense , Activation

from keras.optimizers import Adam

from keras.backend import get_session

model = Sequential ()

model.add(Dense (30, input_shape =(5,)))

model.add(Activation(’relu’))

model.add(Dense (1))

model.add(Activation(’linear ’))

model.summary ()

model.compile(loss=’mean_squared_error ’, optimizer=Adam())

Must be in this order to enable automatic discovery

model.model._make_train_function ()

model.model._make_predict_function ()

Make sure weight assign placeholders are created

weights = model.get_weights ()

model.set_weights(weights)

tf.train.write_graph(get_session ().graph.as_graph_def (), ’./’, ’

cache_tf.pb’, as_text=False)

3.2 Deep Q-Learning in GRL

The library seems promising since it provides an easy way to vary parameters

and analyse the impact of these changes in the final result of the algorithm. For

this reason, Deep Q-Learning was implemented in the GRL. The GRL configurator

3.3. EVALUATING DEEP Q-LEARNING 23

provided a faster manner to evaluate this method in different environments. For

this integration, two main libraries were necessary: Tensorflow [1] and Keras [12].

TensorFlow is an open source software library for numerical computation in data

flow graphs. It is an ideal programming environment to set up a DNNs models,

and its C++ Application Programming Interface (API) contributed to generate

computation graphs that GRL could use along with all its elements which have

already been implemented.

Keras is a high-level API that enables fast experimentation of different param-

eters of neural networks. It provided a fast prototyping in Python programming

language of all ANNs used in this work. Figure 3.1 shows an example of a script

that generates a file graph that could be used in GRL.

3.3 Evaluating Deep Q-Learning

Deep Q-Learning GRL was evaluated within two benchmark problems included

in GRL: Inverted Pendulum andCart-Pole Swing-Up. They are low-dimensional

and continuous control problems that are based on well-defined dynamics of real

physical systems.

3.3.1 The Inverted Pendulum

In the Pendulum task [14], the dynamics of the environment (i.e., equations

of motion) are unknown to the agent, and it must learn how to behave in the

environment only through selecting control actions and the receipt of rewards or

penalties.

3.3. EVALUATING DEEP Q-LEARNING 24

Figure 3.2: Control of a pendulum with limited torque

The Inverted pendulum is a classic problem in Dynamics and Control Theory,

and it is used as a test benchmark for control strategy. This task is established

by connecting a point of mass m, to the end of a massless rigid rod, of length l,

attached to a fixed pivot point at the opposite end to the point. This rod can rotates

in a vertical plane and is driven by a rotary electrical motor in the pivot point (this

scheme is simplified in Figure 3.2).

The ultimate goal of this task is to put the pendulum at its unstable equilibrium,

i.e. the upright position. Since the inverted pendulum is inherently unstable, it

is necessary to always activate the control to keep the inverted state. For this

application, the pendulum is fixed to only move around a certain axis of rotation so

that the degree of freedom is limited to one.

The control voltage is purposely restricted. Therefore the motor does not provide

enough torque to push the pendulum up in a single swing. So, the controller has

to adapt itself to make the pendulum swing back and forth (destabilized) to gather

energy, before being pushed up and stabilized. In the view of Reinforcement Learn-

ing (and Control Theory), this creates a nonlinear control problem; furthermore it

provides an interesting environment to test Deep Q-Learning.

Since the main purpose of this work does not include presenting the structure of

the simulation, as well as its implementation and physical parameters used, it will

be indicated reading for further details. All the particulars about this task in GRL

is based on the Session 4.5.3 of [8].

3.3. EVALUATING DEEP Q-LEARNING 25

Apart from that, there are meaningful elements which are part of the process in

optimizing a RL agent. It is necessary to define states, actions, the reward function

and the discount factor for this task:

States: The state signal is composed of 2-tuple 〈angle θ, angular velocityθ̇〉. The

angle θ is limited to the interval [-π, π] rad, where θ starts in -π meaning the stable

position of the pendulum (down position) and goes up to 0 when it reaches the

unstable position (up position). The velocity θ̇ is defined by the interval [-15π, 15π]

rad/s using saturation.

Actions: The action is composed of 1-tuple 〈voltage u〉. The action is discrete

for the simplification of the problem and it was set as -3V , 0V or 3V .

Reward Function: R(θ, θ̇) = - 5θ2 - 0.1θ̇ - u

Discount Factor: The discount factor is γ = 0.97. This discount factor is large

since the values of early states during the episode should be influenced by rewards

near the goal state.

3.3.2 The Cart-Pole Swing-Up

Figure 3.3: Control of a pendulum with limited torque

Next, Deep Q-Learning was applied to a more challenging task: Cart-Pole Swing-

Up (Figure 3.3), which is a strongly nonlinear extension to the common Cart-Pole

Balancing task [3]. This task is similar to the previous one, except for the pivot

point which is not fixed. It is attached to a cart that can move left or right. The

pendulum is indirectly actuated by the cart via its acceleration.

The ultimate goal of the cart-pole balancing task is to keep the pole vertically

3.4. LEARNING PERFORMANCE 26

up oriented by applying left or right directed forces to the cart. The cart has to be

moved back and forth in such a way that the pendulum can rotate and achieve a

balanced position. As mentioned in the other experiment description, a discussion

about the simulation processes and implementation falls outside the scope of this

work. Our steps proceed equally in the same way as what is indicated in [11]. The

relevant definitions of this task for reinforcement learning agent are:

States: The state signal is composed of 4-tuple 〈position x, velocity ẋ, angle θ,

angular velocity θ̇〉, where x and ẋ are the position and the velocity of the cart.

The angle θ is limited to the interval [-π, π] rad, where θ starts in -π meaning the

stable position of the pendulum (down position) and goes up to 0 when it reaches

the unstable position (up position). The velocity θ̇ is defined by the interval [-15π,

15π] rad/s using saturation.

Actions: The action is composed of a value force F . The action is continuous

and F ∈ {-10, 10} N.

Reward Function: - θ2 - 0.1θ̇2 - 2x2 - 0.1ẋ2

Discount Factor: The discount factor is γ = 0.97.

3.4 Learning Performance

In general, a RL algorithm can be evaluated considering two results: how good

the final policy is and how much reward the agent receives while acting in the world.

The final policy may be important when there is sufficient time for the agent to

learn safely before being deployed. However, there are many RL applications that

suffers from real-world problems (e.g. robotics). Applying reinforcement learning in

robotics demands safe exploration due to high cost which becomes a key challenge

of the learning process. Due to this fact, the reward received while learning may be

what the agent wants to maximize.

In this work, it is evaluated those two results. Inverted Pendulum and Cart-Pole

Swing-Up as presented are safe tasks even when executed in the real world. So, the

3.4. LEARNING PERFORMANCE 27

performance of Deep Q-Learning for these tasks can be evaluated considering the

final policy. But the learning time of the algorithm in those environments is also

important to infer how it will behavior in more complex environments.

In this section, it is reported the evaluation of Deep Q-Learning in Inverted

Pendulum and Cart-Pole Swing-Up environments. A standard strategy was used

to make all experiments and it will be described in Section 3.4.1. The following

subsections show the impact between different parameters of the training.

3.4.1 Standard Strategy

In all cases, the learning trials were interrupted by regular test trials, in which

exploration was set to zero. Those test trials are analyzed in a graph that represents

the accumulate reward as a function of time shown as the mean and 95% confidence

interval over 10 independent runs.

They were compared to two another shallow RL algorithms: SARSA and Q-

Learning. The former is an algorithm for learning a MDP policy as well as Q-

learning which was explained in Section 2.3.1. The end performance is characterized

as the average over the last 10 test trials of all runs. In Pendulum task, the end

performance of SARSA is -813.94 and Q-learning is -848.87. In Cart-Pole task, the

end performance of SARSA is -3211.42 and Q-Learning is -3579.09.

The basic parameters for the pendulum and cart-pole were derived from the

originating papers and are summarized in Table 3.4.1. It was chosen three param-

eters to vary in each simulation (epsilon, minibatch size, update interval) and 6

DNNs models. Those models are represented in Figure 3.4 and each parameter in

Table 3.4.1.

Task α γ λ

Inverted Pendulum 0.02 0.97 0.65

Cart-Pole Swing-Up 0.02 0.97 0.65

Table 3.1: Basic Parameters

3.4. LEARNING PERFORMANCE 28

Parameters Reference Values

Epsilon ε 0.05 0.1 0.3 decay a - decay

Minibatch Size 16 32 64 128 512 128

Update Interval 100 500 1000 2000 - 1000

Table 3.2: Testing Parameters
aepsilon starts as 1 with decay of 0.995 and min limit of 0.01

Figure 3.4: DNNs models for Pendulum and Cart-Pole tasks: models are ordered

from left to right, from (A) to (F). (F) and (E) [rightmost models] are the less

complex DNN models. (A) [leftmost model] is the most deeper DNN model. (A) is

used as reference model.

3.4.2 DNNs models

It was compared the six architectures presented in Figure 3.4. The last two

architectures (Figure 3.4, two rightmost architectures) are the simplest requiring

more computation time to achieve the desired levels of accuracy. From left to right,

the models in Figure 3.4 are roughly ordered in terms of decreasing complexity.

Figure 3.5 and 3.6 report the accumulated reward as a function of training time.

For the simpler problem (inverted pendulum), it was tested the six network topolo-

gies and verified that indeed the leftmost architecture took longer to converge. This

3.4. LEARNING PERFORMANCE 29

is because it is very challenging to make such a simple network converge to an

optimal policy.

For the most challenging problem (cart-pole problem), it was again tested all

topologies, and observed the same behavior as in the inverted pendulum problem.

To simplify visualization, Figure 3.7 shows result from the first three leftmost models

of Figure 3.4. For such three models, it was verified that the first topology took

longer to converge. Now, because these three topologies have somewhat the same

complexity, it was observed that the simpler topology (which has less parameters to

be optimized) converged faster.

This simple exercise serves to illustrate a very fundamental tradeoff in the choice

of the DNN architecture subsumed by deep reinforcement learning solutions: for

the highly simplified DNN architectures, with the larger the generalization power,

it takes longer for the training phase to converge (if there is convergence at all). For

the more complex architectures, the networks with fewer parameters may converge

faster.

In Pendulum task, the end performances were: -813.81, -848.55, -831.16, -890.64,

-848.19, -959.64. In Cart-Pole task, the end performances were: -357.67, -483.68,

-488.59, -425.79, , -1352.03, -1744.40.

Figure 3.5: Inverted Pendulum

tested with 6 DDNs architectures

Figure 3.6: Cart-Pole tested with

6 DDNs architectures

3.4. LEARNING PERFORMANCE 30

Figure 3.7: Cart-Pole tested with 3 DNNs architectures

3.4.3 Epsilon

Next, it was consider the impact of impact of ε (the exploration rate) on the time

to convergence. Figures 3.8 and 3.9 show the impact of ε for the inverted pendulum

and cart-pole problems, respectively. While most of the experiments used a fixed

value of ε, we also experimented with a decaying ε value (denoted by the label

"decay" in the figures). It is interesting to note that the values of ε with which we

experimented did not show a clear impact on the time to convergence. This indicates

a level of robustness of the solution with respect to this meta parameter. Note that

even though it was observed this small sensitivity of the results with respect to ε, it

was kept a decaying ε for the remainder of the experiments, as this was also adopted

in previous works in the literature, e.g., [23].

In Pendulum task, the end performances were: -853.11, -861.52, -854.72, -822.07.

In Cart-Pole task, the end performances were: -426.09, -377.05, -434.35, -416.14.

Figure 3.8: Inverted Pendulum

tested with 4 different ε-policy

Figure 3.9: Cart-Pole tested with

4 different ε-policy

3.4. LEARNING PERFORMANCE 31

3.4.4 Minibatch Size

Next, we consider the impact of the size of the minibatch on the convergence

rate. Figures 3.10 and 3.11 show the convergence time for minibatches of size 16, 64,

512 and 1024, under DNN topology F, for the inverted pendulum and the cart-pole

problems, respectively. It was noted that as the minibatch size increases, the time

to convergence decreases. This monotonicity may be due to the fact that, for the

problems considered, it was always possible to extract information from previous

samples as the training evolves, without leading to overtraining. It was envisioned

that a further increase in the batch size may eventually decrease performance, but

it was left this analysis as subject for future work.

In Pendulum task, the end performances were: -955.28, -837.38, -854.72, -817.85,

-797.26, -804.80. In Cart-Pole task, the end performances were: -1049.36, -659.20,

-493.85, -347.02, -398.90.

Figure 3.10: Inverted Pendulum

tested with 6 different Minibatch

Size

Figure 3.11: Cart-Pole tested

with 5 different Minibatch Size

3.4.5 Update Interval

Next, it was considered the impact of the time between updates on convergence.

It was simulated considering updates every 100, 500, 1000 and 2000 episodes. As

shown in Figures 3.12 and 3.13, the less frequent the updates, the faster the con-

vergence. The comments made in the previous section are applicable here as well.

3.4. LEARNING PERFORMANCE 32

For the problems considered, it was always possible to extract information from the

collected samples inbetween two training executions, without leading to overtrain-

ing. However, it was envisioned that further increasing the training frequency may

degrade performance, specially if it is accounted for the training cost (in terms of

CPU), which has not been considered here, and is left a subject for future work.

In Pendulum task, the end performances were: -809.43, -799.76, -823.24, -848.87.

In Cart-Pole task, the end performances were: -416.26, -486.39, -350.18.

Figure 3.12: Inverted Pendulum

tested with 4 different Update In-

tervals

Figure 3.13: Cart-Pole tested

with 3 different Update Intervals

Chapter 4

Routing-Caching Problem

There are substantial changes happening in the way we use the Internet today.

New methods and algorithms are emerging to bypass inefficient operations imple-

mented in the traditional Internet organization. In this chapter, a new algorithm

named Deep Q-Caching, which combines the concepts of reinforcement learning and

deep neural networks, is proposed to solve routing and cache challenges in an inte-

grated and scalable fashion.

4.1 Internet Overview

The principles of the Internet in the 1970s were made to set up one-to-one con-

nections between two machines - one possessing resources and the other needing

access to those resources. It has been done by giving addresses to end-points al-

lowing them to locate and connect to the destination address (i.e., IP address).

The essential architecture of today’s internet are rooted in those principles and is

represented in Figure 4.1.

However, the purpose of the Internet went through many changes. It has become

not only professional but a personal tool in our lives: sending e-mails, booking

hotels, streaming videos, looking for photos, and accessing your social media. Those

contents are in general a huge amount of videos, web pages and images flowing from

4.2. INFORMATION CENTRIC NETWORKING 34

content providers to viewers. All these activities would call for an Internet as a large

content distribution network.

The current host-driven Internet architecture presents imminent problems when

the goal is to transmit multimedia content. In particular, the Internet has to cope

with multiple host redirections and inefficient operations to resolve a number of

queries. In a long a term, such inefficiencies may make the system non-sustainable,

producing an increasing amount of overhead in terms of processing power to keep

it working. As a consequence, new network environments have appeared where the

traditional TCP/IP communication model is not always the best solution. The

idea of a source-destination communication does not fit in scenarios like Internet of

Things (IoT) or Wireless Sensor Networks (WSN), for example. This is the point

where Information-Centric Networking (ICN) steps in.

Figure 4.1: Current Internet Architecture: ISPs are interconnected with each other,

and there are big service providers connected to them. End-users are attached to

various ISP networks.

4.2 Information Centric Networking

The current Internet is more content-centric than location-centric, i.e., Internet

users are more interested in what is the content instead of where it is from. ICNs

use this idea to redesign the current outdated Internet’s organization. Therefore,

ICNs have received much attention and have shown optimistic results regarding

4.2. INFORMATION CENTRIC NETWORKING 35

performance and scalability on Internet infrastructure [2].

ICNs are based on two ideas: each piece of content has a unique name and

caching is universal in the network. The network functions are operated in terms

of those named piece of contents instead of locations. Thus, in ICN paradigm, each

network node is a content-provider. These nodes – routers, can store replicas of

contents which are identified by its unique name, in their cache memory. Every

router receives, sends to the next hop until it reaches its destination and may also

store the data in its cache. The advantage is clear since a client can be served faster

by an intermediate router than a final server.

Although many different architectures have been proposed for ICNs, the chosen

architecture implementation was done by using a simplified idea of Content-Centric

Network (CCN) architecture: a project introduced by Van Jacobson in his Google

Tech Talk [18] and initialized as a project by Palo Alto Research Center (PARC)

[19]. Even though all aspects of CCNs are very important in a real-world scenario,

some of them are not relevant for the scope of the present work: achieving a good

content name design, the security of user’s content, transport-layer functionalities

that considers realistic use cases are example of that. Besides them, the GRL caching

simulator uses the same core idea in CNNs: deliver contents to users not specifying

the location from where it was obtained, but instead it replicates the content on

multiple servers within the network system. The implementation details will be

described in following sections.

With those requirements and the final version of simulator, it is possible to tackle

two well-known problems in ICNs: finding the optimal routing policy and the op-

timal cache replacement policy. Routing problem is a decision making process of

selecting the optimal path to transmit a data (packets) from a source to its desti-

nation. In ICN case, it answers the question: to which adjacent router should the

current router send its content to get it as fast as possible to its eventual destina-

tion? Caching problem is a decision making process of selecting what content will be

removed (or not) from the cache memory when it is full. In ICN case, it answers the

question: what content this router should remove from its cache memory in order

4.3. Q-ROUTING 36

to minimize the download time of future requests?

ICN turns out to be extremely dynamic since the location and availability of

the contents change over time due to those caching and routing decisions made by

the routers. This intrinsic characteristic gave rise to many approaches for those two

problems aforementioned. An extension of Q-routing [6] was proposed to address

the problem of routing in this kind of network [10] and Q-caching [10], built on top

of Q-routing, uses the information that is already collected by the routing algorithm

to optimize the caching problem. Since this present work aims to extend Q-caching

algorithm with deep neural networks, those strategies will be described in further

details in next sessions.

4.3 Q-Routing

Q-routing [6] is an algorithm which attempts to find an optimal routing policy for

a dynamically changing traffic and topology network using reinforcement learning. It

is a variant of Q-Learning [31], which uses Q-functions to learn a state representation

of the entire network in an asynchronous way: each node n in the network maintains

a routing table with all estimated delivery time of a packet towards other nodes.

Those estimates are represented as Q-values, where Qx(d, y) represents the delivery

time of a packet from node x to a destination node d if the packet is forwarded via

node y ∈ neighbours(n), the set of all neighbors of node x. The forwarding actions

may be done by using a locally greedy routing decision, i.e., when a node x receives

a package to a specific destination d, it chooses the neighboring node y∗ for which

Qx(d, y
∗) is the lowest value compared to all possible Q-values of x’s neighbors.

Upon sending a package P to y∗, x immediately gets back the best Q-estimation t

for P by y∗, namely:

t = min
z∈neighbours(y)

Qy∗(d, z) (4.1)

4.4. Q-CACHING 37

When the node x receives the time t from y, it can update the related Q-value to a

new estimate as follows:

Qx(d, y)← Qx(d, y) + η

new estimate︷︸︸︷
s+ t −

old estimate︷ ︸︸ ︷
Qx(d, y)

 (4.2)

where η is a learning rate parameter and s is the units of time in transmission

between node x and node y.

In recent work, [10] proposed an extension version of Q-routing modeled for ICNs

known as INterest FORwarding Mechanism - INFORM. Instead of estimating a Q-

value for each destination, each router (node) of the network estimates the delivery

time for each content. It replaces the previous table by one that holds a set of

Qr(c, y)∀y ∈ neighbours(r), where neighbours(r) denotes the interfaces (neighbors)

of router r, which represents the cost (reward) in terms of residual delay to the first

hitting cache for a content c sent by router r via y. The updated rule is analogous

to the non-extended Q-routing version.

4.4 Q-Caching

Q-caching [10] is a caching strategy that aims to reduce the average download

time experienced by users in ICNs. It is built on top of Q-routing taking advantage

of the estimated delivery time of a content, i.e., the related Q-value. They are used

not only as a routing decision but also as a caching decision.

In Q-routing work [10], least recently used (LRU) policy was implemented as a

cache replacement algorithm. This algorithm is briefly explained in Figure 99. LRU

presents a good performance although the use of the estimated Q-values can bring

improvements in the cache decision. It is established in Q-caching work [10] using

the following strategy: the most difficult items to be obtained (highest Q-values)

are cached in order to minimize the waiting time for a content. Hence, the router

sorts all contents according to their expected cost and cache them based on the

highest values. As a consequence, items that has a minimum expected cost (MEC)

are evicted. MEC calculates the expected cost by multiplying the waiting time (Q

4.5. DEEP Q-CACHING 38

value) with the probability of receiving a request for that item, obtained through

request counting.

It is important to highlight that routing and caching decisions influence each

other in this scheme. When caching a content, the route that is followed by a

specific content is adjusted, then, it changes the requests seen by other routers in

the network and, consequently, their cache is altered. Therefore, using the same

Q-values to routing and caching, Q-caching provides a better flexibility compared

to LRU, which is limited to the content hit rate. For example, while LRU stores

all contents that passes through the cache, Q-caching controller might not store it.

Those options can lead to a better global optimization of the network.

4.5 Deep Q-Caching

As a next step towards a global optimization of an ICN-based network, this work

presents not only a flexible environment modeled in GRL but also a new step for Q-

caching. To develop Deep Q-Caching, it was exploited the content diversity feature

of Q-caching, some disadvantages of Q-caching were improved and a real-world based

environment were implemented.

4.5.1 Motivation and Goals

There are a sequential evolution of researches related to routing and caching

optimization which were exposed in past sections of this work. Q-routing was in-

troduced as a reinforcement learning approach to optimize a routing policy. In this

algorithm, each router learns to estimate the time to reach a specific destination

given the connected interface. INFORM [10] adapted Q-routing for ICNs: each

router learns to estimate the delay time for each requested content, without specify-

ing a location, given the connected interface. It also combines this adapted version

of Q-routing with LRU for cache decision. Lastly, Q-caching uses the calculated Q

values of INFORM to make better cache decisions, integrating routing and caching

in a simple but effective way. To sum up, every work has made some improvements

4.5. DEEP Q-CACHING 39

in all the previous proposals.

Deep Q-caching is no exception. It is built on top of Q-caching and shares the

same goal: to find an optimal routing and caching policy. However, even if Q-caching

is able to move toward this goal, it might not be scalable in a real-world scenario. It

estimates the cost to obtain each content independently and, consequently, each new

content in the network has to be learned. The experience required to fill that space

is prohibitive since each router needs to accumulate experience for each content.

Because of this, it seems reasonable to think about a better representation of the

contents in order to generalize the data. It would turns possible the estimation of

delay time of new incoming contents.

Another relevant feature of Q-caching has not been discussed yet: Content Di-

versity. It concerns about how the contents will be distributed over the network

after a period of time. Considering LRU strategy (Figure 4.2), a cache can only

be affected with the missing contents of its neighbors: a router x can only send a

request for content c to its neighbor router y if it does not have c in its current cache.

The reason of this limitation is that this strategy always stores the most frequently

requested contents and, therefore, the caching decision is not directly affected by

the states of the neighbors. It differs from Q-caching strategy. In this case, the Q-

value for caching a content c represents the distribution in upstream routers. Thus,

the caching decisions are affected by the states of close routers since close contents

has low cost so the router might not store this content. Such a difference increases

content diversity reducing the expected download times.

Deep Q-caching, inspired by Q-Caching, faces the same challenge of promoting

different content in different caches as a way to decrease the average download time.

As aforementioned, the distribution of a content used as weight is not scalable. So

Deep Q-Caching takes a different path with Deep Neural Networks. This model

often generalize the input data very well and ICNs provide a infrastructure that

permit to treat all requested contents as features.

4.5. DEEP Q-CACHING 40

Figure 4.2: Example of LRU strategy: The access sequence is ABCDEDF, so when

E is accessed, it is a miss. Then, it replaces A because A has the lowest time.

4.5.2 Simulator Overview

Algorithm 3 Event Simulator
1: function simulate . Main function (discrete event simulator)
2: network← build network from "network_topology.txt"
3: queueOfEvents← read events from "event_list.txt"
4: while queueOfEvents 6= ∅ do
5: event e← queueOfEvents.top() . an event comprises an interface

. and a content
6: queueOfEvents.pop()
7: interface i← e.interface()
8: interface.process(e)

There are three main ideas which the simulator uses: event queue, ICN and Deep

Q-Caching. The first one is briefly explained in Algorithm 3. The simulator reads

the network topology using a text file which is an graph adjacency matrix (Line 2).

After this, there is another file that handle all the events (Line 3). Each event is a

line in the text file with numbers: the first part of the numbers is the features of

the contents and the second part is the router id that will create this request. So,

[245 623 123 2] in event_list.txt can be read as "client which is connected in router

4.5. DEEP Q-CACHING 41

2 want the content [245 623 123]". After this, the simulator enters in a while loop

and gets the next event each iteration until all the requests finishes (Line 4). Each

iteration, it processes the event in the interface specified (line 7 and 8).

The second and third idea are represented together in Algorithm 4. Each router

is composed of interfaces, tables and cache memory. It uses a table to remember

what requests from others routers it received and sent to another one. So, if router

A requests a content to router B and B sends this requests to C, B needs to know

by which interface this content has been sent (in this case, A). This table is known

as PIT (Pending Interest Table). There is another table called requisitions that

stores requests which started in this router. Every router has a list of interfaces to

connected routers. So, it will only send or receive a message through the interfaces.

There are three types of messages: request, acknowledge and data. The first step of

the router is to check the type of the message to process. Each type of message has

a different process function. They are described in Algorithm 4.

processRequestArrival happens when another router sends a request. First, the

router checks if it has the content in its cache (Line 4). Then, if there is the content,

it creates a new message with the content and add in the simulator queue returning

via same interface (Line 7). If there is not, the router needs to make a routing

decision (Line 9). It gets the interface with minimum estimate delay time (i.e.

minimum Q-values) and add in the simulator queue a request message in the chosen

interface (Line 11). As a consequence of receiving a request content, the router

needs to send an acknowledge message via the same interface (Line 13).

processContentArrival happens when another router sends a content. First,

router checks if it had made the requisition (Line 4). If positive, the router just

delete the requisition (because it earned the content) and return. If negative, it

looks to pit table to see which interface made this requisition and send through

them (Line 7, 14 and 15). During this time, it has to make a caching decision (Line

10). If there is a content in cache that has smaller delay time than the current

content, then it is added in cache (Line 12). Note that when the data arrives, the

router can calculate the true q-value of this content via the pit table which has the

4.5. DEEP Q-CACHING 42

time it made the prediction, so it can train the DNN with those values (Line 13).

processAckArrival happens when another router sends the q-value. The router

gets the q-value and train the DNN with respect to the content that was requested

to another router.

Algorithm 4 Deep Q-Caching
1: function processRequestArrival(event) . Content request received
2: message← event.message
3: interface← event.interface
4: if message ∈ router.cache then
5: new_message← create message as "data" message
6: new_event← (new_message, interface)
7: queue.add(new_event)
8: else
9: destination, q-value← minQ()

10: new_event← (message, destination)
11: queue.add(new_event)
12: new_message← create message as "ack" message using q-value
13: new_event← (new_message, interface)

1: function processContentArrival(event) . Data received from another
router

2: message← event.message
3: content← message.data
4: if content ∈ router.requisitions then
5: router.requisitions.delete(message.id)
6: else
7: destination← router.pit(message)
8: router.pit.delete(message.id)
9: prediction q ← agent.predict(content)

10: if q > cache.min() then . Check if content goes to cache
11: cache.remove()
12: cache.add(content)

13: agent.fit(content, true q-value)
14: new_event← (message, destination)
15: queue.add(new_event)

1: function processAckArrival(event). Q value received from another router
2: qvalue← event.q
3: agent.fit(content, qvalue)

4.6. PRELIMINARY RESULTS 43

4.6 Preliminary Results

To appreciate the performance of the proposed Deep Q-Caching algorithm, it

was ran a sample simulation of a simple network, with 7 routers, where each of

the 7 routers has a corresponding agent which makes caching and routing decisions.

In addition, there is a custodian server which stores all contents. The topology is

illustrated in Figure 4.2.

At each time slot, there is a single content request. Each router estimates the

cost-to-go to obtain a content from the catalog. Such estimates evolve over time,

and converge as illustrated in a video made available at Youtube: http://tinyurl.

com/hugorlvideo

As our next steps, we intend to reproduce the results presented in the previous

chapter under this new domain. In particular, we plan to study the impact of dif-

ferent parameters on the convergence rate, and to compare Deep Q-Caching against

other proposals in the literature.

Figure 4.3: Network topology.

http://tinyurl.com/hugorlvideo
http://tinyurl.com/hugorlvideo

Chapter 5

Conclusion

In this work, it was investigated different factors that impact the performance

of deep reinforcement learning solutions. First, it was developed and tested in a

generic reinforcement learning library (GRL). The library allows to perform sensi-

tivity analysis and to understand the impact of multiple parameters on convergence

time and accuracy of reinforcement learning results. In particular, it was evalu-

ated two reinforcement learning problems in details using GRL: Inverted Pendulum

and Cart-Pole Swing-Up. Then, the problem of joint caching-routing problem was

mapped into the Deep-Q-Learning framework, giving rise to Deep-Q-Caching. In

particular, it was indicated that Q values (i.e., the value function) can be used both

for routing and caching decisions. We also show that deep neural networks can be

used to relate decisions on similar contents, avoiding the curse of dimensionality in

determining an individual decision per content in the catalog. Finally, we gave a

first step towards using GRL to solve instances of the caching-routing problem. Our

preliminary results indicate that Deep-Q-Caching is a promising solution to cope

with the caching and routing of contents in networks oriented by contents.

This work opens up several avenues for future research.

1. Further analysis of Deep-Q-Caching: we plan to reproduce the sensitiviy

analysis results of Inverted Pendulum and Cart-Pole Swing-Up, now in the

domain of Deep-Q-Caching.

45

2. Expand investigation of parameter space: we plan to expand the pa-

rameter space on top of which we investigate textitInverted Pendulum and

Cart-Pole Swing-Up, to find tradeoffs, e.g., in the choice of the minibatch size

(does the performance degrade as the minibatch size becomes too large? or is

it always monotone? what about the training frequency?)

3. Automatic parameter tuning: we plan to use the knowledge gained in

this work to give recommendations on how to set meta-parameters for rein-

forcement learning solutions.

References

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,

C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,

Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefow-

icz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga,

R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,

Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke,

V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Watten-

berg, M., Wicke, M., Yu, Y., e Zheng, X. TensorFlow: Large-scale

machine learning on heterogeneous systems, 2015. Software available from ten-

sorflow.org.

[2] Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., e Ohlman,

B. A survey of information-centric networking. IEEE Communications Maga-

zine 50, 7 (2012).

[3] Barto, A. G., Sutton, R. S., e Anderson, C. W. Neuronlike adaptive

elements that can solve difficult learning control problems. IEEE transactions

on systems, man, and cybernetics, 5 (1983), 834–846.

[4] Bellman, R. The theory of dynamic programming. Relatório técnico, RAND

CORP SANTA MONICA CA, 1954.

[5] Bottou, L. Large-scale machine learning with stochastic gradient descent. In

Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

REFERENCES 47

[6] Boyan, J. A., e Littman, M. L. Packet routing in dynamically changing net-

works: A reinforcement learning approach. In Advances in neural information

processing systems (1994), pp. 671–678.

[7] Breiman, L. Random forests. Machine learning 45, 1 (2001), 5–32.

[8] Busoniu, L., Babuska, R., De Schutter, B., e Ernst, D. Reinforcement

learning and dynamic programming using function approximators, vol. 39. CRC

press, 2010.

[9] Caarls, W., Hargreaves, E., e Menasché, D. S. Q-caching: an inte-

grated reinforcement-learning approach for caching and routing in information-

centric networks. arXiv preprint arXiv:1512.08469 (2015).

[10] Caarls, W., Hargreaves, E., e Menasché, D. S. Q-caching: an inte-

grated reinforcement-learning approach for caching and routing in information-

centric networks. arXiv preprint arXiv:1512.08469 (2015).

[11] Caarls, W., e Schuitema, E. Parallel online temporal difference learning

for motor control. IEEE transactions on neural networks and learning systems

27, 7 (2016), 1457–1468.

[12] Chollet, F., e others. Keras. https://github.com/fchollet/keras,

2015.

[13] Domingos, P. A few useful things to know about machine learning. Commu-

nications of the ACM 55, 10 (2012), 78–87.

[14] Doya, K. Reinforcement learning in continuous time and space. Neural com-

putation 12, 1 (2000), 219–245.

[15] Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., e Scholkopf, B.

Support vector machines. IEEE Intelligent Systems and their applications 13,

4 (1998), 18–28.

[16] Hecht-Nielsen, R., e others. Theory of the backpropagation neural net-

work. Neural Networks 1, Supplement-1 (1988), 445–448.

https://github.com/fchollet/keras

REFERENCES 48

[17] Ioffe, S., e Szegedy, C. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In International Conference on

Machine Learning (2015), pp. 448–456.

[18] Jacobson, V. A new way to look at networking. Google Tech Talk 30 (2006).

[19] Jacobson, V., Smetters, D. K., Thornton, J. D., Plass, M. F.,

Briggs, N. H., e Braynard, R. L. Networking named content. In Proceed-

ings of the 5th international conference on Emerging networking experiments

and technologies (2009), ACM, pp. 1–12.

[20] Kaelbling, L. P., Littman, M. L., e Moore, A. W. Reinforcement

learning: A survey. Journal of artificial intelligence research 4 (1996), 237–

285.

[21] Kappen, H. J. Optimal control theory and the linear bellman equation.

[22] Melo, F. S. Convergence of q-learning: A simple proof. Institute Of Systems

and Robotics, Tech. Rep (2001), 1–4.

[23] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,

Wierstra, D., e Riedmiller, M. Playing atari with deep reinforcement

learning. arXiv preprint arXiv:1312.5602 (2013).

[24] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,

Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,

Ostrovski, G., e others. Human-level control through deep reinforcement

learning. Nature 518, 7540 (2015), 529–533.

[25] Schmidhuber, J. Deep learning in neural networks: An overview. Neural

networks 61 (2015), 85–117.

[26] Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., e

Salakhutdinov, R. Dropout: a simple way to prevent neural networks from

overfitting. Journal of machine learning research 15, 1 (2014), 1929–1958.

[27] Sutton, R. S., e Barto, A. G. Reinforcement learning: An introduction,

vol. 1. MIT press Cambridge, 1998.

REFERENCES 49

[28] Tanner, B., e White, A. RL-Glue : Language-independent software for

reinforcement-learning experiments. Journal of Machine Learning Research 10

(September 2009), 2133–2136.

[29] Thorndike, E. L. The law of effect. The American Journal of Psychology

39, 1/4 (1927), 212–222.

[30] Turing, A. M. Computing machinery and intelligence. Mind 59, 236 (1950),

433–460.

[31] Watkins, C. J., e Dayan, P. Q-learning. Machine learning 8, 3-4 (1992),

279–292.

	Agradecimentos
	Abstract
	Abstract
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations and Acronyms
	Introduction
	Contributions
	Roadmap

	Background on Machine Learning and Deep Reinforcement Learning
	Machine Learning
	Artificial Neural Networks
	The Single Neuron Model
	The Multilayer Model
	The Learning Problem
	Deep Learning

	Reinforcement Learning
	Q-Learning
	Deep Q-Network

	Generic Reinforcement Learning Library
	GRL
	Deep Q-Learning in GRL
	Evaluating Deep Q-Learning
	The Inverted Pendulum
	The Cart-Pole Swing-Up

	Learning Performance
	Standard Strategy
	DNNs models
	Epsilon
	Minibatch Size
	Update Interval

	Routing-Caching Problem
	Internet Overview
	Information Centric Networking
	Q-Routing
	Q-Caching
	Deep Q-Caching
	Motivation and Goals
	Simulator Overview

	Preliminary Results

	Conclusion
	References

